Rube Goldberg Middle School Rubric For Argumentative Essay

Pre-Req Knowledge

Students should be able to identify the six simple machines and describe how they work. It is not necessary that students have manipulated them before, although it may be helpful. With some explanation students may find they have used the various machines before, for example:

  • Screw, such as a twist-off lid or a screw use to attach materials together
  • Wedge, such as a doorstop used to keep open a door
  • Pully, such as a tow truck winch used to lift up a car
  • Incline plane, such as descriptions of how ancient Egyptian pyramids were built by pushing blocks up ramps to the pyramid top
  • Wheel and axle, such as skateboard and bicycle wheels or door knobs
  • Lever, such as playground seesaws, prying a nail out of wood by using the claw end of a hammer or opening a can of paint with a flat screwdriver

Students should understand the main steps of the cyclical engineering design process: identify a task, brainstorm ideas, create a prototype, test, identify problems, brainstorm solutions, recreate, retest.

Learning Objectives

After this activity, students should be able to:

  • Describe the six simple machines and create a design that incorporates them all.
  • Use given materials and apply engineering skills to create a physical, functioning machine that completes a specified goal.
  • Work collaboratively as a team to build a complex device that incorporates at least one of each of the six simple machines: incline plane, screw, pulley, wheel and axle, lever, and wedge.

More Curriculum Like This

Engineering: Simple Machines

Students are introduced to the six types of simple machines — the wedge, wheel and axle, lever, inclined plane, screw, and pulley — in the context of the construction of a pyramid, gaining high-level insights into tools that have been used since ancient times and are still in use today.

Slide Right on By Using an Inclined Plane

Students explore building a pyramid, learning about the simple machine called an inclined plane. They also learn about another simple machine, the screw, and how it is used as a lifting or fastening device.

Levers That Lift

Students are introduced to three of the six simple machines used by many engineers: lever, pulley, and wheel-and-axle. In general, engineers use the lever to magnify the force applied to an object, the pulley to lift heavy loads over a vertical path, and the wheel-and-axle to magnify the torque appl...

The Advantage of Machines

In this lesson, students learn about work as defined by physical science and see that work is made easier through the use of simple machines. Already encountering simple machines everyday, students will learn about their widespread uses in improving everyday life.

Educational Standards

Each TeachEngineering lesson or activity is correlated to one or more K-12 science, technology, engineering or math (STEM) educational standards.

All 100,000+ K-12 STEM standards covered in TeachEngineering are collected, maintained and packaged by the Achievement Standards Network (ASN), a project of D2L (www.achievementstandards.org).

In the ASN, standards are hierarchically structured: first by source; e.g., by state; within source by type; e.g., science or mathematics; within type by subtype, then by grade, etc.

NGSS: Next Generation Science Standards - Science
  • Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy. (Grades 9 - 12) Details...View more aligned curriculum... Do you agree with this alignment? Thanks for your feedback!
  • Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering. (Grades 9 - 12) Details...View more aligned curriculum... Do you agree with this alignment? Thanks for your feedback!
International Technology and Engineering Educators Association - Technology
  • The design process includes defining a problem, brainstorming, researching and generating ideas, identifying criteria and specifying constraints, exploring possibilities, selecting an approach, developing a design proposal, making a model or prototype, testing and evaluating the design using specifications, refining the design, creating or making it, and communicating processes and results. (Grades 9 - 12) Details...View more aligned curriculum... Do you agree with this alignment? Thanks for your feedback!
  • Research and development is a specific problem-solving approach that is used intensively in business and industry to prepare devices and systems for the marketplace. (Grades 9 - 12) Details...View more aligned curriculum... Do you agree with this alignment? Thanks for your feedback!
Michigan - Science
  • Identify scientific tradeoffs in design decisions and choose among alternative solutions. (Grades 9 - 12) Details...View more aligned curriculum... Do you agree with this alignment? Thanks for your feedback!
  • Evaluate the uncertainties or validity of scientific conclusions using an understanding of sources of measurement error, the challenges of controlling variables, accuracy of data analysis, logic of argument, logic of experimental design, and/or the dependence on underlying assumptions. (Grades 9 - 12) Details...View more aligned curriculum... Do you agree with this alignment? Thanks for your feedback!
Suggest an alignment not listed above

Materials List

Each group needs:

  • plywood base, 4 foot X 4 foot (1.2 m X 1.2 m)
  • 400-piece K'NEX®, a construction toy that includes bricks, rods and connectors for open-ended building, such the value tub for $24.50 at https://www.amazon.com/Knex-Value-Tub-400-pieces/dp/B000F1ST1Q
  • 20 paper plates
  • 1 bag Pepperidge Farm® Goldfish® crackers
  • 1 roll yarn
  • 1 roll duct tape
  • 1 roll scotch tape
  • 1 sleeve Mentos® mint candies
  • 20 pieces paper
  • 6 wooden boards, 2 of each length .5, 1, 1.5 foot (15 cm, 30 cm, 46 cm)
  • 4-foot (1.2-m) piece of corner edging
  • 20-oz (590-ml) diet soda, such as Diet Coke®
  • 4 mouse traps
  • 1 box toothpicks
  • 20 dominoes
  • 6 magnets
  • 20 pipe cleaners
  • 1 pulley
  • 1 toy car
  • 20 paper cups
  • 2 screws
  • 2 small dowels
  • 20 rubber bands
  • 10 balloons
  • 5 marbles
  • 2 foam tubes, wide enough that marbles can fit inside
  • wooden wedge
  • dowel pieces, 1-inch diameter, 2 of each length: .5, 1, 1.5 inch (1.27 cm, 2.54 cm, 3.81 cm)
  • scissors
  • hammer and box of nails
  • staple gun and box of staples
  • hot glue gun and 7 hot glue sticks
  • Grading Rubric

To share with the entire class:

  • computer with internet connection and projector, to show short YouTube videos

Note: Adding or subtracting materials from this list is acceptable. However, providing a larger range of materials allows students to be more creative in the design of their machines! It is important for the competition that each group has the exact same materials.

Introduction/Motivation

Working as a team, you will use a set of provided materials to create a machine that utilizes all of the six simple machines. Each simple machine is used to make life easier in some way. Let's review them.

An incline plane, or a ramp, provides a flat surface that is at an angle to the horizontal ground. Traveling along an incline plane enables objects to be moved to a higher point without having to lift them straight up. This increases the distance the object needs to be moved, but reduces the force required because of less opposition from gravitational force. Inclined planes make the work of moving things easier. One example that you may of heard about is the use of ramps to build the ancient pyramids. Egyptions pushed the giagantic blocks up ramps to the top of the pyramid. Today, ramps are often used to lift heavy objects, such as moving furniture from the ground into a truck or van.

A wedge is a simple machine that can be made of two inclined planes or a curved surface reaching a sharp point. Wedges are used to split, cut or put holes in an object. One example is a nail, which has a small, sharp tip and and a larger body. A nail is always hammered into a piece of wood tip first because the tip can split through the wood, working as a wedge. Another example is an axe blade used to chop wood. Its tip is thin, so it can get into the wood; then, as the larger part of the axe blade is forced in into the wood, it has an outward force large enough to split the wood apart.

A pulley is a combination of a solid loop and a roller. A pulley reduces the friction of pulling an object up and also allows a pulling motion to lift an object. Examples include hanging a deer for skinning or a weight lifting machine in a gym, in which you pull down on a bar that is connected to a wire that goes through a pulley and connects to the weight, pulling it up.

A screw is a simple machine that works to hold something in place. If you look closely, you can see that a screw is composed of two other simple machines—an inclined plane and a wedge. The tip of the screw is the wedge and the thread of the screw is a very long inclined plane wrapped around the main cyclinder body of the screw. The wedge tip enables the screw to make a hole in wood, for example, and then, once the threads are inside the wood, they hold the screw inside the wood. Other examples are the twisting lid on a jar and a machine vise that tightly clamps a board in place.

A wheel and axle is composed of a rod attached to a wheel, which is generally much larger in diamater than the axle. The axle is rotated in order to turn the wheel. The smaller radius of the rod can be turned with a smaller force then the whole wheel, so by turning the axle the larger wheel can be more easily rotated. A few examples are wheels on vehicles, skateboards and bikes. The axle of a Ferris wheel enables the entire huge wheel, holding all of the dangling passenger seats at its rim, to turn.

A lever is a long straight object that is used to lift something with less force then would otherwise be necessary. A smaller force on the longer end of the rod, based on the fulcrum (the point that the rod pivots on) becomes a larger force on the shorted end of the rod that is prying something up. Levers may be the most common simple machine because just about anything with a handle serves as a lever. Examples are a playground seesaw, or using the claw end of a hammer to pry a nail out of a piece of wood. The nail could not be pulled straight out, but using the lever of the hammer a little bit of force initially can lead to a larger force acting to pull out the nail.

Your task today is somewhat like the work of mechanical engineers who create designs so that an assortment of parts work together to accomplish a goal—such as the steering on a car, the levers that move the gears in your bicycle, the functioning of a replacement (prosthetic) hand, or the buttons that control your phone.

In groups, you will act as mechanical engineers to create multi-step machines that complete a specified task and incorporate the simple machines, operating on their own.

(Show students a few short YouTube videos of elaborate and fun example Rube Goldberg contraptions. See the suggested videos in the Additional Multimedia section.)

Our machines will be on a much smaller scale, but just as you saw in the videos, you are permitted to only touch the machine to start it; the rest of the movement must be completely self-sufficient.

(If time permits, as a class, go back through one of the videos and, pausing when needed, identify all the simple machines that were used.)

In today's project you will also be following the steps of the engineering design process. Do you remember what they are? (Listen to student answers. Write them on the board.) That's right, identify a task, brainstorm ideas, create (construct), test, identify problems, brainstorm solutions, recreate, retest. The engineering process is cyclical. Steps can be skipped and returned to in both directions—since engineers' work is never done because improvements can always be made! Think about how you can apply these steps to your project today.

Vocabulary/Definitions

engineering design process: A series of steps used by engineering teams to guide them as they develop new solutions, products or systems. The engineering process is cyclical, and steps can be skipped and returned to in both directions.

inclined plane: A flat surface that is higher on one end. Used to move an object to a lower or higher place. Less energy and force is needed to move objects via an inclined plane. Examples: ramp, slide.

lever: A long straight object that pivots or moves back and forth at a certain point (called the fulcrum). By changing the position of the fulcrum, extra power can be gained with less effort. Examples: seesaw, hammer prying out a nail.

pulley: A simple machine that uses a grooved wheel(s) and a rope to raise, lower or move a load.

Rube Goldberg: A complex machine that performs a simple task, often in a laborious and comical fashion; named after the cartoonist and engineer who poked fun at overly complicated machines.

screw: An inclined plane wrapped around a rod. Screws are used to hold things together. Examples: clamps, spiral staircases.

wedge: A "v" shape that helps to push things apart. Examples: knife and shovel blades, nail tip.

wheel and axle: A simple machine composed of a rod that is attached to the center of a wheel. Rotating the axle assists and allows the wheel turn.

Procedure

Background

Once students are refreshed on the six simple machines and how they work, ask them to provide everyday examples of how they are used. Then provide groups with materials and an allotted amount of time to create machines that can complete one of three goal options such as: 1) dump goldfish into a bowl, 2) pop a balloon or 3) drop mint candies into soda pop.

For this open-ended, higher-level thinking activity, encourage creativity but enforce the time limitation. Do not micromanage how students create their machines; an unlimited number of successful solutions exist. If groups get waylaid, have them refer back to the steps of the engineering design process to see where they are, see how much time is left, and focus on essential items on the rubric to meet the end goal. The primary design process steps are: identify the task, brainstorm ideas, create a design, test the design, identify problems, brainstorm solutions, recreate, and retest.

In the interest of time efficiency, consider having students brainstorm outside of the class period or in the evening between the two class periods. For building and testing, give students the rest of the first class period and all but 15 minutes of the second class period.

Once machines are completed, groups demonstrate them to the rest of the class. Use the rubric to award points for including each simple machine at least once, successful transitions and goal completion.

Before the Activity

  • Collect all the materials and divide them up evenly for each group.
  • Make copies of the Grading Rubric, one per group.
  • Pre-determine groups of five students, so that each group has an even skill level. Tip: Do not put all top students in one group.

With the Students

  1. Present students with the Introduction/Motivation content to provide a brief overview of the six simple machines and recap the steps of the engineering design process. As necessary for the knowledge level of your class, show students how each machine works.
  2. Divide the class into the pre-determined groups.
  3. Hand out materials, tools and a grading rubric to each group.
  4. Explain the design challenge: Use the given materials within the time limitation to create a Rube Goldberg machine that includes as many of the six simple machines as possible to achieve one of the three goal options. You may only touch the completed machine to start it; the rest of the movement must be completely self-sufficient.
  5. (optional) Show students photographs and videos of example student-created Rube Goldberg machines from conducting this activity at a high school in Michigan. See the websites in the Additional Multimedia Support section.
  6. In their groups, have students brainstorm ideas and draw their plans in some detail before starting to build. Give students the rest of the period and all but 15 minutes of the second class period to plan, construct, test and improve their machines.
  7. As students are constructing, go around the room and ask what they are building and where the simple machines come into play—to make sure they are not forgetting about them!
  8. After time is up (with 15 minutes left in the second class period), have each group point out each simple machine that is incorporated into its Rube Goldberg machine, and then demonstrate it for the rest of the class. While groups are demonstrating their machines, fill out a grading rubric for each, as described in the Assessment section. Announce the winning team.
  9. Conclude by having students sort and clean-up materials for trash and recycling, and returning tools to safe storage.

Attachments

Grading Rubric (docx)

Grading Rubric (pdf)

Safety Issues

  • Review with students all safety precautions and procedures for use of the hammers, glue guns and staple guns.

Assessment

Pre-Activity Assessment

Simple Machines Review: As a class discussion, ask students to name the six common types of simple machines, explain how they work and provide examples of how each is used. (Example answers: A screw might be a twist-off jar lid or a screw that attaches two pieces of wood together. A wedge might be a doorstop used to keep a door open or a snowplow's blade. A pulley is often used to hang a deer carcass or as part of a tow truck winch that lifts a car's wheels off the ground. An incline plane is often used to push something up a hill, which is easier than lifting it straight off the ground, such as a handicap ramp to enter a building. Wheels and axles are commonly part of vehicles, but also in door knobs and merry-go-rounds. A lever is at work in the playground seesaw, opening a can of paint with a flat screwdriver, or using the claw end of a hammer to pry a nail out of a piece of wood.)

Activity Embedded Assessment

Engagement Questions: While students are engaged in constructing their machines, circulate the classroom and ask them questions to increase their awareness and reflection, and keep them on task. Ask the students:

  • How are you using the six simple machines? (Answers will vary. Look for examples such as using wedges to prop up items, inclines to roll down items, pulleys to raise something while lowering something else, etc.)
  • What are you going to do to reach your goal? (Expect students to be able to describe how their machines are intended to function. For example, the marble leaves the ramp and causes the cup to tip over.)
  • At what step of the engineering design process are you working in now? (Expect answers to include one of the following stages: planning, building, testing, redesigning, rebuilding or retesting.)

Post-Activity Assessment

Final Demos: Use a Grading Rubric to evaluate each group project. Check off which simple machines were included, whether or not they worked or transitioned successfully, and if the machine as a whole met its ultimate goal. Expect all team members to be able to explain their machines, including pointing out each simple machine included and how it qualifies and contributes to the functioning of the machine. (Example: This wedge props up a bucket so all the soda pop stays in one end. The ball rolls down this incline plane to move the ball from a high place to a low place more slowly than just falling straight down.)

For purposes of the competition, the rubric provides an all-or-none type of grading. When it asks, "did it work?"—it is literally asking whether a screw was successful or if the wedge did what students intended it to do. So give every section a yes or no rating—no partial points.

While the grading rubric serves to compare machines for purposes of the competition, it does not necessarily reflect the grade that an individual student deserves. It is recommend that students receive full credit (in terms of their individual grades) for participation, tempered with teacher observations of their engagement and contributions to the project in the form of ideas offered, collaboration efforts, construction work and presentation explanations.

Activity Extensions

Give students time to go through another iteration or two of the engineering design process based on the results of their Rube Goldberg machine performances. Have students identify any problems that occurred during the demonstration and redesign their machines to address those issues or incorporate new, improved aspects. After students rebuild their machines, retest via class demonstrations.

Additional Multimedia Support

Show students these elaborate and entertaining Rube Goldberg contraption YouTube videos:

  • OK Go-This Too Shall Pass Rube Goldberg Machine Version (3:54 minutes; starts with a toy truck knocking down a row of dominoes and ends by throwing paint at four band members): http://www.youtube.com/watch?v=3CBDOYPL_xA
  • Honda All Physics Rube Goldberg Project Setup (2:26 minutes; a TV commercial that starts with a rolling gear that triggers a series of events using car parts): https://www.youtube.com/watch?v=dOJIE4S5uaY

Show students photographs and videos of example student-created Rube Goldberg machines from conducting this activity at a high school in Michigan. See photos at https://plus.google.com/photos/111857533082157096017/albums/5852392472000536897?authkey=CJ3MmN3-s56NtAE. See videos at https://sites.google.com/site/cmunsfresearchproject2012/high-school-classroom-visits/rube-goldberg-john-glenn-high-school.

See additional lessons and activities involving Rube Goldberg machines by searching the TeachEngineering digital library, such as Rube Goldberg and the Meaning of Machines > Design and Build a Rube Goldberg.

References

Simple Machines (vocabulary). NASA Event Catalog. Accessed June 25, 2013. http://www.nasa.gov/offices/education/programs/national/dln/events/Simple_Machines.html

Contributors

Jackie Swanson

Copyright

© 2013 by Regents of the University of Colorado; original © 2012 Central Michigan University

Supporting Program

RET Site on Multidisciplinary Engineering Research for Rural Michigan's Future, Central Michigan University

Acknowledgements

This curriculum was developed under National Science Foundation Research Experience for Teachers grant no. EEC 1201095. However, these contents do not necessarily represent the policies of the National Science Foundation, and you should not assume endorsement by the federal government.

Last modified: March 2, 2018

Summary

Refreshed with an understanding of the six simple machines; screw, wedge, pully, incline plane, wheel and axle, and lever, student groups receive materials and an allotted amount of time to act as mechanical engineers to design and create machines that can complete specified tasks. For the competition, they choose from pre-determined goal options such as: 1) dumping goldfish into a bowl, 2) popping a balloon, or 3) dropping mint candies into soda pop (creating a fizzy reaction). Students demonstrate their functioning contraptions to the class, earning points for using all six simple machines, successful transitions from one chain reaction to the next, and completion of the end goal. This engineering curriculum meets Next Generation Science Standards (NGSS).

Engineering Connection

Students act as mechanical engineers to design and create machines that combine multiple parts and functions to ultimately complete goals. Even if the Rube Goldberg machine steps are silly and inefficient, they parallel the work of mechanical engineers who design and create machines to complete the tasks of our human lives. For example, for cars to operate as intended, mechanical engineers must design each part to work perfectly with all the other vehicle parts with which it interacts. The steering wheel must correctly work with the axle and wheels (an example of a simple machine) so that the vehicle can be turned. Engineers follow the steps of the engineering design process to ensure that designs meet specified requirements and constraints. Even after a successful test of a design, engineers go back through the process to determine how to make the design work even better.

Lesson Plans
Return to Lesson Plan Index
Printer Friendly Version

The Great Rube Goldberg Polymer Machine

Grades: 7-12 Physics or Physical Science
Author: Penny Porter
Source: This material is based upon work supported by the National Science Foundation under Grant No. EEC-1161732. "Rube Goldberg" is the description of a type of machine used by many educational institutions for contests. There are no set rules…only that the machine must be "over-engineered!"


Abstract

Using the Rube Goldberg over-engineered method of design, students will find and utilize only polymers to construct a machine that will move a Polymer object (ball, car, etc) from point A to point B. They must incorporate a Shape-Memory Polymer and at least one example from each category of polymers found in the recycle codes for plastic #1 – #7. The object must change directions at least three times during the trip. This entire lesson allows teachers to meet science content standards and introduce polymers and other science concepts using Best Teaching Practices, Hands-on/Minds-on Learning and Authentic Problem-based Learning.


Objectives

What should students know as a result of this lesson?

  • (DOK Level 1) Identify different types of polymer’s (recycle codes # 1-#7); Recognize the properties of different types of polymers
  • (DOK Level 2) Follow a routine procedure to produce a polymer (SMP = Shape Memory Polymer); Predict the motions of a rubber object as it moves through the Rube Goldberg machine
  • DOK = Depth Of Knowledge Levels

What should the students be able to do as a result of this lesson?

  • (DOK Level 3) Assess properties of various polymer products (i.e. PETE soda bottles) and how they will perform in the machine team will design
  • (DOK Level 3) Use concepts to solve non-routine problems
  • (DOK Level 3) Hypothesize how to construct Rube Goldberg machine with polymer products
  • (DOK Level 4) Design a machine that will move rubber objects from point A to point B.
  • (DOK Level 4) Write an argumentative paper regarding polymers usage- are they saving our resources/environment or adding problems to the environment?
  • DOK = Depth Of Knowledge Levels

Materials

  • Rubber objects to use as moving object and other polymer materials will be provided by students
  • Shape memory polymer – a method to prepare one using a rubber band and lauric acid is provided, or Shrinky Dinks or commercial shrink wrap can be used here

Procedures

Engagement

Before the production of the shape memory polymer, a pretest will be given to determine how much the student knows about polymers, plastics, what can be recycled...etc.

[To get students excited about polymers we will first watch: http://uakron.edu/cpspe/agpa-k12outreach/what-are-polymers/multimedia-presentation-intro-to-polymers/whatarepolymers.html and then make a shape memory polymer (lab found in worksheet section as worksheet 1)]

  • After inspecting our SMPs, we will return to our seats and view a "Rube Goldberg" machine in action (http://2dhouse.com/rubegoldbergmachines.php). Explain that a Rube Goldberg machine is a contraption that is deliberately over-engineered and performs a simple task in a complex way.
  • Explain to the students that we are going to make a Rube Goldberg contraption using only polymers. Ask the students if they know what a polymer is. List the student's answers on board.
  • Describe polymers and the recycle symbols (worksheet 2)
  • Tell the students the rules of the project (included within the project worksheet 3)
  • Split them into teams for the Rube Goldberg Polymer Machine project.

Assessment: The assessment is informal at this stage. All students should be involved in this discussion. Student's questions are welcomed.

Exploration

  • Each team should organize themselves and become familiar with the goal.
  • Students may use internet or library resources to research polymers and Rube Goldberg machines
  • Students will design the machine following the rules given (project worksheet 3)
  • Students may test the machine and revise if necessary
  • Each team will run their machine
  • Teams will take turns videotaping the run.
  • Each member will evaluate their machine's run (rubric 1)
  • Each team member will evaluate each member of the team's teamwork (rubric 2)

Assessment: The assessment will be based upon two rubrics which are located within the worksheet section. Teacher should see that students are all engaged building the machine.

Explanation

As a class review and discuss the machines and the results of the teams by viewing the video of each run

  • Students will receive a worksheet to take notes of each machine (worksheet 4)
  • Critique the designs
  • Analyze the function of the seven different types of polymers incorporated into the machine
  • Describe how different teams may have used similar polymers to perform similar functions
  • Using rubric 1 again, evaluate the other team's machines.

Assessment: Students should be actively involved in the evaluation of machines. Each student must hand in rubric 1 listing their score of each machine, worksheet 4, and rubric 2 for their team.

Elaboration

As a final project, each student will write an argumentative paper to support their claim either for (pro) or against (con) the production of polymers. Their claim must be supported with facts found from at least four different sources. Student must avoid plagiarism and follow the standard format for citation of references. Directions will be given in worksheet 5.

Assessment: Paper will be graded as the major paper for that grading period. (Rubric 3)


Prerequisites

None


Best Teaching Practices

  • Hands-on/Minds-on Learning
  • Communication skills
  • Inquiry approaches
  • On going, embedded, authentic assessment

Alignment with Standards

NGSS Standards:

  • HS-PS3-2. Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).
  • HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.* [Clarification Statement: Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices]

Common Core Standards:

  • RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks. (MS-PS1-6)
  • RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-PS1-1),(MS-PS1-2),(MS-PS1-4),(MS-PS1-5)
  • WHST.6-8.7 Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration. (MS-PS1-6)
  • RST.11-12.3. Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
  • WHST.11-12.1. Write arguments focused on discipline –specific content./li>

Ohio Standards:

  • Science Inquiry and Application: Design and conduct scientific investigations, Use technology (internet) to improve investigations, Formulate and revise explanations and models using logic and evidence (critical thinking), Recognize and analyze explanations and models, Communicate and support a scientific argument
  • Energy and Waves: Conservation of Energy, Transfer and transformation of energy (including work)
  • Physics course content: Motion, Forces, Newton's Laws of Motion, Energy
  • College and Career Readiness Anchor Standards for Writing: 1. Write arguments to support claims in an analysis of substantive topics or texts using valid reasoning and sufficient evidence. 8. Gather relevant information from multiple print and digital sources, assess the credibility and accuracy of each source, and integrate the information while avoiding plagiarism.
  • [Note: The Rube Goldberg Machine will reinforce all of Newton’s Laws of Motion, Momentum, the Conservation of Energy Law and Motion in two dimensions (motion down an incline and projectile motion.]

Content Knowledge

It is assumed that the average high school or middle school student knows nothing about polymers. Students will be introduced to polymers using videos, samples, internet.

Student must search the internet, ask questions of instructor and research textbooks to build a knowledge base. This knowledge may be added into the Learning Cycle at any level.


Safety

General classroom safety rules should be followed.

When building the machine, care should be taken when using scissors or knives to cut plastic.

A general warning regarding the misuse of rubber bands should be given prior to lab.


Applications

Natural and synthetic polymer materials are significant to our everyday lives. Our world is moving in the direction of replacing wood, steel, and other resources with polymers. We must become more informed regarding their wide range of properties, what materials they come from, and investigate how to dispose of them properly without harm to environment, wildlife, and humans.


Assessment

Assess each section of work using the rubrics and worksheets given; determine the success of each team’s Rube Goldberg machine by checking that they followed the rules; Grading the paper


Other Considerations

Grouping Suggestions: YOYO = You’re on Your Own!

Pacing/Suggested Time:

A. = Making Shape Memory Polymer (Activities in Lesson)

B. = Designing and Producing the Rube Goldberg Machine (Activities in Lesson)

C. = Argumentative Paper involving Polymers (Activities in Lesson)

Portion A will take one day to mix and one day to cure (day is free from polymer work unless teacher wishes to use this day to introduce project) on the third day it will be ready.

Portion B will take a range of two to five days to complete. This will be determined by several factors:

  • Teacher providing all polymer materials or are the student teams finding their own
  • Students making/designing and building during class time or are students designing and building on their own

One day must be used to actually run each machine and video tape each run.

Portion C can be assigned as a large paper due any time within several weeks.


Printable PDF Worksheets

Making a Polymer Worksheet 1

Recycle codes of Polymers Worksheet 2

Rube Goldberg Polymer Project Worksheet 3

Rube Goldberg Machine Conclusion Worksheet 4

Rube Goldberg Machine Evaluation Rubric 1

Team Member Evaluation Rubric 2

Polymer Argumentative Paper Worksheet 5

Evaluation of the Paper Rubric 3

0 Replies to “Rube Goldberg Middle School Rubric For Argumentative Essay”

Lascia un Commento

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *